Homework 6 Algebra

Joshua Ruiter

April 10, 2018

Proposition 0.1 (Exercise 1, Image of ψ_S). Let A be a commutative ring and S a multiplicative subset. Let J(A) denote the set of ideals of A and let $J(S^{-1}A)$ denote the set of ideals of $S^{-1}A$. Then define $\psi_S: J(A) \to J(S^{-1}A)$ by

$$\psi_S(I) = S^{-1}I = \left\{ \frac{a}{s} : a \in I, s \in S \right\}$$

The map $\psi_S: J(A) \to J(S^{-1}A)$ defined above is surjective.

Proof. Let $f: A \to S^{-1}A$ be the canonical homomorphism $a \mapsto \frac{a}{1}$ and let I be an ideal of $S^{-1}A$. We know that $f^{-1}(I)$ is an ideal of A. We claim that $\psi_S(f^{-1}(I)) = I$. (Then I must be in the image of ψ_S , so ψ_S is surjective.) First we show that $\psi_S(f^{-1}(I)) \subset I$. From the definition,

$$\psi_S(f^{-1}(I)) = \left\{ \frac{a}{s} : a \in f^{-1}(I), s \in S \right\} = \left\{ \frac{a}{s} : f(a) = \frac{a}{1} \in I, s \in S \right\}$$
$$= \left\{ \left(\frac{a}{1} \right) \left(\frac{1}{s} \right) : \frac{a}{1} \in I, \frac{1}{s} \in S \right\} \subset I$$

where the last inclusion follows from the fact that I is an ideal of $S^{-1}A$. Now we show that $I \subset \psi_S(f^{-1}(I))$. If $\frac{a}{s} \in I$, then

$$\left(\frac{a}{s}\right)\left(\frac{s}{1}\right) = \frac{a}{1} = f(a) \in I \implies a \in f^{-1}(I) \implies \frac{a}{s} \in \psi_S(f^{-1}(I))$$

Hence $I = \psi_S(f^{-1}(I))$, so ψ_S is surjective.

Proposition 0.2 (Exercise 1, Kernel of ψ_S). Let ψ_S be the map defined above. Then its kernel, with respect to the multiplicative homomorphism structure of J(A) is

$$\ker \psi_S = \{I : I \cap S \neq \emptyset\}$$

Proof. Suppose $I \in \ker \psi_S$. Then

$$\psi_S(I) = \left\{ \frac{a}{s} : a \in I, s \in S \right\} = S^{-1}A$$

If $I \cap S \neq \emptyset$, then $\psi_S(I)$ contains 1 and hence is equal to $S^{-1}A$. If $I \cap S = \emptyset$, then $1 \notin \psi_S(I)$, so $\psi_S(I) \neq S^{-1}A$. Thus an ideal I is in the kernel of ψ if and only if it has nonempty intersection with S.

Proposition 0.3 (Exercise 2a). Every Euclidean domain is a principal ideal domain. Consequently, every Euclidean domain is a unique factorization domain.

Proof. Let R be a Euclidean domain, and $\phi: R \setminus \{0\} \to \mathbb{N}$ a function satisfying $ab \neq 0 \Longrightarrow \phi(a) < \phi(ab)$ and for $a, b \in R$ with $b \neq 0$, there exist $r, q \in R$ so that a = qb + r with either r = 0 or $r \neq 0$ and $\phi(r) < \phi(b)$.

Let I be an ideal of R and choose a nonzero $a \in I$ such that $\phi(a) \leq \phi(b)$ for all $b \in I$. We claim that $I = \langle a \rangle$. If $b \in I$ with $b \neq 0$, then there exist r, q such that b = aq + r where r = 0 or $\phi(r) < \phi(a)$. Then since r = b - aq, $r \in I$. By choice of a, we have $\phi(a) \geq \phi(r)$, so we must have r = 0. Thus b = aq for some $q \in R$, hence $I = \langle a \rangle$.

Every principal ideal domain is a unique factorization domain, so every Euclidean domain is a unique factorization domain. $\hfill\Box$

Lemma 0.4 (for Exercise 2b). Define $\phi : \mathbb{Z}[i] \setminus \{0\} \to \mathbb{N}$ by $\phi(a+bi) = a^2 + b^2$. Then $\phi(xy) = \phi(x)\phi(y)$.

Proof. Let $x = a + bi, y = c + di \in \mathbb{Z}[i]$.

$$\phi(xy) = \phi((a+bi)(c+di)) = \phi((ac-bd) + (ad+bc)) = (ac-bd)^2 + (ad+bc)^2$$

$$= a^2c^2 - 2acbd + b^2d^2 + a^2d^2 + 2adbc + b^2c^2 = a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2$$

$$= (a^2 + b^2)(c^2 + d^2) = \phi(a+bi)\phi(c+di) = \phi(x)\phi(y)$$

Proposition 0.5 (Exercise 2b, part one). The ring $\mathbb{Z}[i]$ is a Euclidean domain. Consequently, it is a principal ideal domain and a unique factorization domain.

Proof. Define $\phi : \mathbb{Z}[i] \setminus \{0\} \to \mathbb{N}$ by $\phi(a+bi) = a^2 + b^2$. The first property is easy. Suppose $xy \in \mathbb{Z}[i]$ with $xy \neq 0$. As shown above, $\phi(xy) = \phi(x)\phi(y)$, so

$$\phi(x) \le \phi(x)\phi(y) = \phi(xy)$$

since $\phi(y) \geq 1$. The second property is harder. Suppose that $x, y \in \mathbb{Z}[i]$ with $y \neq 0$. Since $\mathbb{Z}[i]$ is an integral domain, we can form its field of fractions K. Since $y \neq 0$, $xy^{-1} \in K$. We claim that we can write xy^{-1} as s+ti for $s,t \in \mathbb{Q}$, by performing an operation analogous to multiplying by the complex conjugate. If x = a + bi and y = c + di, then

$$xy^{-1} = \frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(ac+bd)+(ad-bc)i}{c^2-d^2} = \frac{ac+bd}{c^2-d^2} + \frac{ad-bc}{c^2-d^2}i$$

So we have written xy^{-1} in the appropriate form. Then we can choose $m, n \in \mathbb{Z}$ so that $|m-s| \leq \frac{1}{2}$ and $|n-t| \leq \frac{1}{2}$. Then

$$xy^{-1} = s + ti = (m - m + s) + (n - n + t)i = (m + ni) + [(s - m) + (t - n)]i$$

Then multiplying through by y gives

$$x = (m+ni)y + [(s-m) + (t-n)]yi$$

Finally, let q = (m+ni) and r = [(s-m)+(t-n)i]y. We have $q \in \mathbb{Z}[i]$ and since r = x-qy we also have $r \in \mathbb{Z}[i]$. And

$$\phi(r) = \phi([(s-m) + (t-n)i]y) = \phi([(s-m) + (t-n)i])\phi(y)$$
$$= ((s-m)^2 + (t-n)^2)\phi(y) \le \left(\frac{1}{4} + \frac{1}{4}\right)\phi(y) \le \phi(y)$$

Thus $\mathbb{Z}[i]$ satisfies the division algorithm property. Thus ϕ makes $\mathbb{Z}[i]$ a Euclidean domain, which implies that it is also a principal ideal domain and a unique factorization domain. \square

Proposition 0.6 (Exercise 2b, part two). Let $R = \mathbb{Z}[i]$ and define ϕ as above. Then $x \in \mathbb{Z}[i]$ is a unit if and only if $\phi(x) = 1$. Consequently, the only units in $\mathbb{Z}[i]$ are $\pm 1, \pm i$.

Proof. Suppose that x is a unit. Then $\phi(1) = \phi(xx^{-1}) = \phi(x)\phi(x^{-1})$. Since $\phi(1) = 1$, this implies that $\phi(x) = 1$. Conversely, suppose that $\phi(x) = \phi(a+bi) = a^2 + b^2 = 1$. The only integer solutions to this are (1,0), (0,1), (-1,0), and (0,-1). Hence x is one of the units 1,-1,i,-i. We have shown that if x is a unit, then $\phi(x) = 1$, and if $\phi(x) = 1$, then $x \in \{\pm 1, \pm i\}$. Hence the only units are $\pm 1, \pm i$.

Proposition 0.7 (Chapter 2, Exercise 10a). Let $D \in \mathbb{N}$ and let

$$R = \{a + b\sqrt{-D} : a, b \in \mathbb{Z}\}\$$

(We denote R by $\mathbb{Z}[\sqrt{-D}]$.) Then define multiplication and addition in R analogously with the ring structure on \mathbb{C} :

$$(a + b\sqrt{-D}) + (c + d\sqrt{-D}) = (a + c) + (b + d)\sqrt{-D}$$
$$(a + b\sqrt{-D})(c + d\sqrt{-D}) = (ac - bdD) + (ad + bc)\sqrt{-D}$$

Then R is a ring under these operations.

Proof. First we check that R is an abelian group with respect to addition. Closure is easy, the identity is $0+0\sqrt{-D}$, and the additive inverse of $a+b\sqrt{-D}$ is $=a-b\sqrt{-D}$. Associativity is inherited from \mathbb{Z} . The multiplicative unit is $1+0\sqrt{-D}$, since

$$(a + b\sqrt{-D})(1 + 0\sqrt{-D}) = (a1 - 0bD) + (a0 + b1\sqrt{-D}) = a + b\sqrt{-D}$$

for $a + b\sqrt{-D} \in \mathbb{Z}[\sqrt{-D}]$. We check associativity with a tedious computation. Note that this computation isn't really necessary, because $\mathbb{Z}[\sqrt{-D}]$ is a subring of \mathbb{C} , so associativity is inherited.

$$\begin{split} [(a+b\sqrt{-D})(c+d\sqrt{-D})](e+f\sqrt{-D}) &= [(ac-bdD) + (ad+bc)\sqrt{-D}](e+f\sqrt{-D}) \\ &= [(ac-bdD)e - (ad+bc)fD] + [(ac-bdD)f + (ad+bc)e]\sqrt{-D} \\ &= [ace-bdeD-adfD+bcfD] + [acf-bdfD+ade+bce]\sqrt{-D} \\ (a+b\sqrt{-D})[(c+d\sqrt{-D})(e+f\sqrt{-D})] &= (a+b\sqrt{-D})[(ce-dfD) + (cf+ed)\sqrt{-D}] \\ &= [a(ce-dfD)-b(cf+de)D] + [b(ce-dfD)+a(cf+de)]\sqrt{-D} \\ &= [ace-adfD-bdfD-bdeD] + [bce-bdfD+acf+ade]\sqrt{-D} \end{split}$$

Thus multiplication is associative. Finally, we check that multiplication distributes over addition with another tedious calculation.

$$(a + b\sqrt{-D})[(c + d\sqrt{-D}) + (e + f\sqrt{-D})] = (a + b\sqrt{-D})[(c + e) + (d + f)\sqrt{-D}]$$

$$= [a(c + e) - b(d + f)D] + [b(c + e) + a(d + f)]\sqrt{-D}$$

$$= [ac + ae - bdD - bfD] + [bc + be + ad + af]\sqrt{-D}$$

$$(a + b\sqrt{-D})(c + d\sqrt{-D}) + (a + b\sqrt{-D})(e + f\sqrt{-D}) =$$

$$= [(ac - bdD) + (ad + bc)D] + [(ae - bfD) + (af + be)\sqrt{-D}]$$

$$= [ac + ae - bdD - bfD] + [ad + bc + af + be]\sqrt{-D}$$

Thus multiplication distributes over addition.

Proposition 0.8 (Chapter 2, Exercise 10b). Let $D \in \mathbb{N}$ and let $R = \mathbb{Z}[\sqrt{-D}]$. Then the map $R \to R$ given by $(a + b\sqrt{-D}) \mapsto (a - d\sqrt{-D})$ is a ring isomorphism.

Proof. It is obvious that ϕ is a bijection. It is a homomorphism by the following tedious calculations. Let $a, b, c, d \in \mathbb{Z}$. Addition is preserved, as seen below.

$$\phi[(a+b\sqrt{-D}) + (c+d\sqrt{-D})] = \phi[(a+c) + (b+d)\sqrt{-D}]$$

$$= (a+c) - (b+d)\sqrt{-D}$$

$$= (a-d\sqrt{-D}) + (c-d\sqrt{-D})$$

$$= \phi(a+b\sqrt{-D}) + \phi(c+d\sqrt{-D})$$

And multiplication is also preserved, by the following calculation.

$$\phi[(a+b\sqrt{-D})(c+d\sqrt{-D})] = \phi[(ac-bdD) + (bc+ad)\sqrt{-D}]$$

$$= (ac-bdD) - (bc+ad)\sqrt{-D}$$

$$= (ac-bdD) + (-bc-ad)\sqrt{-D}$$

$$= (a-b\sqrt{-D})(c-d\sqrt{-D})$$

Lemma 0.9 (for Chapter 2, Exercise 10c). Let $D \in \mathbb{N}$ and let $R = \mathbb{Z}[\sqrt{-D}]$. Define $\phi: R \setminus \{0\} \to \mathbb{N}$ by

$$\phi(a+b\sqrt{-D}) = a^2 + b^2D$$

Then $\phi(xy) = \phi(x)\phi(y)$ for $x, y \in R$.

Proof. Let $x = a + b\sqrt{-D}$ and $y = c + d\sqrt{-D}$.

$$\phi(xy) = \phi((a+b\sqrt{-D})(c+d\sqrt{-D})) = \phi((ac-bdD) + (ad+bc))$$

$$= (ac-bdD)^2 + (ad+bc)^2D$$

$$= a^2c^2 - 2acbdD + b^2d^2D^2 + a^2d^2D + 2adbcD + b^2c^2D$$

$$= a^2c^2 + b^2d^2D^2 + a^2d^2D + b^2c^2D = (a^2 + b^2D)(c^2 + d^2D)$$

$$= \phi(a+b\sqrt{-D})\phi(c+d\sqrt{-D}) = \phi(x)\phi(y)$$

Proposition 0.10 (Chapter 2, Exercise 10c). Let $D \geq 2$ and define ϕ as above. Then $\phi(x) = 1$ if and only if x is a unit. Consequently, the only units in $\mathbb{Z}[\sqrt{-D}]$ are ± 1 .

Proof. Suppose that $x=a+b\sqrt{-D}$ is a unit in $\mathbb{Z}[\sqrt{-D}]$. Then $\phi(1)=\phi(xx^{-1})=\phi(x)\phi(x^{-1})$. Since $\phi(1)=1$, this implies that $\phi(x)=1$. Conversely, suppose that $\phi(x)=\phi(a+b\sqrt{-D})=a^2+b^2D=1$. Then since $D\geq 2$, the only integer solutions for a,b are a=1,b=0. Hence x is the unit ± 1 .

We have shown that if x is a unit, then $\phi(x) = 1$, and if $\phi(x) = 1$, then $x = \pm 1$. Hence the only units are ± 1 .

Proposition 0.11 (Chapter 2, Exercise 10d). The elements $3, 2 + \sqrt{-5}$, and $2 - \sqrt{-5}$ are irreducible in $\mathbb{Z}[\sqrt{-5}]$.

Proof. Suppose that any of $3, 2 + \sqrt{-5}$ or $2 - \sqrt{-5}$ is reducible. Then it can be written as a product xy for some non-units $x, y \in \mathbb{Z}[\sqrt{-5}]$. Then

$$9 = \phi(3) = \phi(2 + \sqrt{-5}) = \phi(2 - \sqrt{-5}) = \phi(xy) = \phi(x)\phi(y)$$

Since $\phi(x), \phi(y) \in \mathbb{N} \subset \mathbb{Z}$ and \mathbb{Z} is a unique factorization domain, this implies that $\phi(x) = \phi(y) = 3$ or $\phi(x) = 1$ and $\phi(y) = 9$ (up to switching the labels x, y.) The latter case contradicts the fact that x is not a unit, so we have $\phi(x) = \phi(y) = 3$. Then if $x = a + b\sqrt{-5}$, we have $a^2 + 5b^2 = 3$.

There are no solutions to the above equation for integers a, b. (We must have b = 0 since otherwise the sum exceeds 3, but 3 is not the square of any integer.) Thus there is no such $x \in \mathbb{Z}[\sqrt{-5}]$ with $\phi(x) = 3$, so there cannot be such a nontrivial factorization of $3, 2 + \sqrt{-5}$, or $2 - \sqrt{-5}$. Hence all three are irreducible.

Proposition 0.12 (Chapter 2, Exercise 10e). The ideal $(3, 2 + \sqrt{-5})$ is not principal in $\mathbb{Z}[\sqrt{-5}]$.

Proof. Suppose it is principal. Then we can write 3 and $2 + \sqrt{-5}$ as multiples of some $x \in \mathbb{Z}[\sqrt{-5}]$.

$$3 = \alpha x \qquad 2 + \sqrt{-5} = \beta x$$

where $\alpha, \beta \in \mathbb{Z}[\sqrt{-5}]$. Then

$$9 = \phi(3) = \phi(\alpha)\phi(x)$$
 $9 = \phi(2 + \sqrt{-5}) = \phi(\beta)\phi(x)$

By the same arguments as in part (d), there is no $x \in \mathbb{Z}[\sqrt{-5}]$ with $\phi(x) = 3$, so these equations imply that $\phi(x) \in \{\pm 1, \pm 9\}$. If $\phi(x) = \pm 9$, then $\phi(\alpha) = \phi(\beta) = 1$, so α, β are units, which mean they are equal to $\pm 1, \pm i$. (Note that $\pm i \notin \mathbb{Z}[\sqrt{-5}]$.) But this would imply that $3 = \beta \alpha^{-1}(2 + \sqrt{-5})$ for $\alpha, \beta \in \{\pm 1, \pm i\}$, which is false. Thus $\phi(x) = \pm 1$, which implies that x is unit. Then $\langle x \rangle = R$, so in particular, $2 - \sqrt{-5}$ can be written as

$$2 - \sqrt{-5} = 3(a + b\sqrt{-5}) + (2 + \sqrt{-5})(c + d\sqrt{-5})$$
$$= 3a + 3b\sqrt{-5} + 2c - 5d + 2d\sqrt{-5} + c\sqrt{-5}$$
$$= (3a + 2c - 5d) + (3b + 2d + c)\sqrt{-5}$$

which implies c = -1 - 3b - 2d so

$$(3a + 2c - 5d) = (3a + 2(-1 - 3b - 2d) - 5d) = (3a - 2 - 6b - 9d)$$

Then equating the "real" parts gives

$$2 = (3a - 6b - 9d - 2) \implies 4 = 3a - 6b - 9d = 3(a - 2b - 3d)$$

But 4 is not divisible by 3, so this is impossible for $a, b, d \in \mathbb{Z}$. Hence $2 - \sqrt{-5} \notin \langle 3, 2 + \sqrt{-5} \rangle$, so $\langle 3, 2 + \sqrt{-5} \rangle \neq \langle x \rangle$. Thus it is not a principal ideal.

Proposition 0.13 (Chapter 4, Exercise 1). Let k be a field and $f(x) \in k[x]$. The following are equivalent:

- 1. The ideal $\langle f(x) \rangle$ is prime.
- 2. The ideal $\langle f(x) \rangle$ is maximal.
- 3. f(x) is irreducible.

Proof. We already know that $(2) \implies (1)$ since every maximal ideal is prime. First we show $(1) \implies (3)$. Suppose that $\langle f(x) \rangle$ is prime and f(x) is reducible. Then there exist $h, g \in k[x]$ so that f = gh and g, h both have degree ≥ 1 . Then $gh \in \langle f(x) \rangle$, but neither of g, h is in $\langle f(x) \rangle$ since both have degree strictly less than deg f. This contradicts $\langle f(x) \rangle$ being prime, so f is irreducible. Thus $(1) \implies (3)$.

Now we show that $(3) \implies (2)$. Suppose that f(x) is irreducible, and $\langle f(x) \rangle$ is not maximal. Then there is a proper ideal $I \subset k[x]$ with $\langle f(x) \rangle \subset I$. Since k[x] is a principal ideal domain, $I = \langle g(x) \rangle$ for some $g \in k[x]$. Then $f \in \langle g \rangle$ so f(x) = g(x)h(x) for some $h \in k[x]$. Since f is irreducible, one of g, h is constant. If h is constant, then $\langle f \rangle = \langle g \rangle = I$, and if g is constant then $\langle g \rangle = k[x]$. Thus I = k[x] of $I = \langle f \rangle$. Thus $\langle f \rangle$ is maximal. \square

Proposition 0.14 (Chapter 4, Exercise 5a). $f(x) = x^4 + 1$ and $g(x) = x^6 + x^3 + 1$ are irreducible over \mathbb{Q} .

Proof. First we compute

$$f(x+1) = (x+1)^4 + 1 = x^4 + 4x^3 + 6x^2 + 4x + 2$$

Now we can apply Eisenstein's criterion, with p = 2. Thus f(x + 1) is irreducible over \mathbb{Q} , so f(x) is also irreducible over \mathbb{Q} . Similarly,

$$g(x+1) = (x+1)^6 + (x+1)^3 + 1 = x^6 + 6x^5 + 15x^4 + 21x^3 + 18x^2 + 9x + 3$$

so g(x+1) satisfies Eisenstein's criterion for p=3. Thus g(x+1) is irreducible over \mathbb{Q} , so g(x) is irreducible over \mathbb{Q} .

Proposition 0.15 (Chapter 4, Exercise 5b, part one). Let K be a field. A polynomial $f \in k[x]$ with degree 3 is either irreducible or has a root in K.

Proof. Suppose f is reducible. Then we can write it as f(x) = g(x)h(x) where g, h both have degree greater than or equal to 1. Then since $\deg f = 3 = \deg g + \deg h$, one of g, h must have degree 1. WLOG, assume $\deg g = 1$. Then g(x) = ax + b for some $a, b \in k$. Then $g(-a^{-1}b) = 0$, so $-a^{-1}b$ is a root of g, and hence a root of f.

Proposition 0.16 (Chapter 4, Exercise 5b, part two). $f(x) = x^3 - 5x^2 + 1$ is irreducible over \mathbb{Q} .

Proof. By the integral root test, a rational root b/d of f must satisfy b|1 and d|1. Thus ± 1 are the only possible rational roots. Since f(1) = -3 and f(-1) = -5, f has no rational roots. By the above proposition, f is irreducible over \mathbb{Q} .

Lemma 0.17 (for Chapter 4, Exercise 5c). Let R be a unique factorization domain and let $f \in R[x_1, \ldots, x_n]$ be nonzero. Let A be a unique factorization domain containing R. If f is irreducible in $A[x_1, \ldots, x_n]$, then f is irreducible in $R[x_1, \ldots, x_n]$.

Proof. Let $\phi: R \to A$ be the inclusion homomorphism. Then $\phi f \neq 0$ and $\deg \phi f = \deg f$. By hypothesis, ϕf is irreducible in $A[x_1, \ldots, x_n]$, so by Theorem 3.2 (Reduction Criterion, page 185 of Lang), f is irreducible in $R[x_1, \ldots, x_n]$.

Proposition 0.18 (Chapter 4, Exercise 5c). $f(x,y) = x^2 + y^2 - 1$ is irreducible in $\mathbb{C}[x,y]$.

Proof. Note that $\mathbb{C}[y]$ is a unique factorization domain and (y-1) is a prime. Then $f \in (\mathbb{C}[y])[x] = \mathbb{C}[x,y]$, and we can rewrite f as

$$f(x,y) = x^2 + y^2 - 1 = x^2 + (y-1)(y+1)$$

So we can see that f satisfies Eisenstein's criterion for the prime (y-1). Thus f is irreducible in K[x], where K is the quotient field of $\mathbb{C}[y]$. Then because $\mathbb{C}[y] \subset K$, we also have $\mathbb{C}[y][x] = \mathbb{C}[x,y] \subset K[x]$. By the above lemma, since f is irreducible in K[x], it is irreducible in $\mathbb{C}[x,y]$.

Corollary 0.19 (Chapter 4, Exercise 5c). $f(x,y) = x^2 + y^2 - 1$ is irreducible over \mathbb{Q} .

Proof. The unique factorization domain $\mathbb{Q}[x,y]$ is a subset of the unique factorization domain $\mathbb{C}[x,y]$, and f is irreducible in $\mathbb{C}[x,y]$. By the above lemma, this implies that f is irreducible in $\mathbb{Q}[x,y]$.

Lemma 0.20 (for Exercise 4, Chapter 6). Let A be a unique factorization domain. For $a, b \in A$,

$$a|b\iff b\equiv 0 \bmod a$$

Proof.

$$b \equiv 0 \mod a \iff b - 0 = b \in (a) \iff b = ac \iff a|b$$

Proposition 0.21 (Chapter 4, Exercise 6, The Integral Root Test). Let A be a unique factorization domain and K is quotient field. Let

$$f(x) = a_n x^n + \ldots + a_0 \in A[x]$$

and let $\alpha \in K$ be a root of f, with $\alpha = b/d$ where b,d are relatively prime. Then $b|a_0$ and $d|a_n$. In particular, if $a_n = 1$, then $\alpha \in A$ and $\alpha|a_0$.

Proof. If $\alpha = b/d$ is a root of f, then

$$f(\alpha) = f(b/d) = 0 \implies a_n(b/d)^n + \ldots + a_1(b/d) + a_0 = 0$$

Multiplying by d^n gives

$$a_n b^n + a_{n-1} b^{n-1} d + \ldots + a_1 b d^{n-1} + a_0 d^n = 0$$

Thus $a_nb^n \equiv 0 \mod d$ and $a_0 \equiv 0 \mod b$. Thus $d|a_nb^n$ and $b|a_0b^n$. Since b,d are relatively prime, $d \nmid b^n$ and $b \nmid d^n$. Thus $d|a_n$ and $b|a_0$. If $a_n = 1$, then d must be a unit, so $\alpha = b/d \in A$.