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Proposition 0.1 (Exercise 1, Image of ψS). Let A be a commutative ring and S a multi-
plicative subset. Let J(A) denote the set of ideals of A and let J(S−1A) denote the set of
ideals of S−1A. Then define ψS : J(A)→ J(S−1A) by

ψS(I) = S−1I =
{a
s

: a ∈ I, s ∈ S
}

The map ψS : J(A)→ J(S−1A) defined above is surjective.

Proof. Let f : A → S−1A be the canonical homomorphism a 7→ a
1

and let I be an ideal of
S−1A. We know that f−1(I) is an ideal of A. We claim that ψS(f−1(I)) = I. (Then I must
be in the image of ψS, so ψS is surjective.) First we show that ψS(f−1(I)) ⊂ I. From the
definition,

ψS(f−1(I)) =
{a
s

: a ∈ f−1(I), s ∈ S
}

=
{a
s

: f(a) =
a

1
∈ I, s ∈ S

}
=

{(a
1

)(1

s

)
:
a

1
∈ I, 1

s
∈ S

}
⊂ I

where the last inclusion follows from the fact that I is an ideal of S−1A. Now we show that
I ⊂ ψS(f−1(I)). If a

s
∈ I, then(a

s

)(s
1

)
=
a

1
= f(a) ∈ I =⇒ a ∈ f−1(I) =⇒ a

s
∈ ψS(f−1(I))

Hence I = ψS(f−1(I)), so ψS is surjective.

Proposition 0.2 (Exercise 1, Kernel of ψS). Let ψS be the map defined above. Then its
kernel, with respect to the multiplicative homomorphism structure of J(A) is

kerψS = {I : I ∩ S 6= ∅}

Proof. Suppose I ∈ kerψS. Then

ψS(I) =
{a
s

: a ∈ I, s ∈ S
}

= S−1A

If I ∩S 6= ∅, then ψS(I) contains 1 and hence is equal to S−1A. If I ∩S = ∅, then 1 6∈ ψS(I),
so ψS(I) 6= S−1A. Thus an ideal I is in the kernel of ψ if and only if it has nonempty
intersection with S.
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Proposition 0.3 (Exercise 2a). Every Euclidean domain is a principal ideal domain. Con-
sequently, every Euclidean domain is a unique factorization domain.

Proof. Let R be a Euclidean domain, and φ : R \ {0} → N a function satisfying ab 6= 0 =⇒
φ(a) < φ(ab) and for a, b ∈ R with b 6= 0, there exist r, q ∈ R so that a = qb+ r with either
r = 0 or r 6= 0 and φ(r) < φ(b).

Let I be an ideal of R and choose a nonzero a ∈ I such that φ(a) ≤ φ(b) for all b ∈ I.
We claim that I = 〈a〉. If b ∈ I with b 6= 0, then there exist r, q such that b = aq + r where
r = 0 or φ(r) < φ(a). Then since r = b− aq, r ∈ I. By choice of a, we have φ(a) ≥ φ(r), so
we must have r = 0. Thus b = aq for some q ∈ R, hence I = 〈a〉.

Every principal ideal domain is a unique factorization domain, so every Euclidean domain
is a unique factorization domain.

Lemma 0.4 (for Exercise 2b). Define φ : Z[i] \ {0} → N by φ(a + bi) = a2 + b2. Then
φ(xy) = φ(x)φ(y).

Proof. Let x = a+ bi, y = c+ di ∈ Z[i].

φ(xy) = φ((a+ bi)(c+ di)) = φ((ac− bd) + (ad+ bc)) = (ac− bd)2 + (ad+ bc)2

= a2c2 − 2acbd+ b2d2 + a2d2 + 2adbc+ b2c2 = a2c2 + a2d2 + b2c2 + b2d2

= (a2 + b2)(c2 + d2) = φ(a+ bi)φ(c+ di) = φ(x)φ(y)

Proposition 0.5 (Exercise 2b, part one). The ring Z[i] is a Euclidean domain. Conse-
quently, it is a principal ideal domain and a unique factorization domain.

Proof. Define φ : Z[i] \ {0} → N by φ(a+ bi) = a2 + b2. The first property is easy. Suppose
xy ∈ Z[i] with xy 6= 0. As shown above, φ(xy) = φ(x)φ(y), so

φ(x) ≤ φ(x)φ(y) = φ(xy)

since φ(y) ≥ 1. The second property is harder. Suppose that x, y ∈ Z[i] with y 6= 0. Since
Z[i] is an integral domain, we can form its field of fractions K. Since y 6= 0, xy−1 ∈ K. We
claim that we can write xy−1 as s+ ti for s, t ∈ Q, by performing an operation analogous to
multiplying by the complex conjugate. If x = a+ bi and y = c+ di, then

xy−1 =
a+ bi

c+ di
=

(a+ bi)(c− di)
(c+ di)(c− di)

=
(ac+ bd) + (ad− bc)i

c2 − d2
=
ac+ bd

c2 − d2
+
ad− bc
c2 − d2

i

So we have written xy−1 in the appropriate form. Then we can choose m,n ∈ Z so that
|m− s| ≤ 1

2
and |n− t| ≤ 1

2
. Then

xy−1 = s+ ti = (m−m+ s) + (n− n+ t)i = (m+ ni) +
[
(s−m) + (t− n)

]
i

Then multiplying through by y gives

x = (m+ ni)y +
[
(s−m) + (t− n)

]
yi
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Finally, let q = (m+ni) and r = [(s−m) + (t−n)i]y. We have q ∈ Z[i] and since r = x− qy
we also have r ∈ Z[i]. And

φ(r) = φ([(s−m) + (t− n)i]y) = φ([(s−m) + (t− n)i])φ(y)

=
(
(s−m)2 + (t− n)2

)
φ(y) ≤

(
1

4
+

1

4

)
φ(y) ≤ φ(y)

Thus Z[i] satisfies the division algorithm property. Thus φ makes Z[i] a Euclidean domain,
which implies that it is also a principal ideal domain and a unique factorization domain.

Proposition 0.6 (Exercise 2b, part two). Let R = Z[i] and define φ as above. Then x ∈ Z[i]
is a unit if and only if φ(x) = 1. Consequently, the only units in Z[i] are ±1,±i.

Proof. Suppose that x is a unit. Then φ(1) = φ(xx−1) = φ(x)φ(x−1). Since φ(1) = 1, this
implies that φ(x) = 1. Conversely, suppose that φ(x) = φ(a + bi) = a2 + b2 = 1. The
only integer solutions to this are (1, 0), (0, 1), (−1, 0), and (0,−1). Hence x is one of the
units 1,−1, i,−i. We have shown that if x is a unit, then φ(x) = 1, and if φ(x) = 1, then
x ∈ {±1,±i}. Hence the only units are ±1,±i.

Proposition 0.7 (Chapter 2, Exercise 10a). Let D ∈ N and let

R = {a+ b
√
−D : a, b ∈ Z}

(We denote R by Z[
√
−D].) Then define multiplication and addition in R analogously with

the ring structure on C:

(a+ b
√
−D) + (c+ d

√
−D) = (a+ c) + (b+ d)

√
−D

(a+ b
√
−D)(c+ d

√
−D) = (ac− bdD) + (ad+ bc)

√
−D

Then R is a ring under these operations.

Proof. First we check that R is an abelian group with respect to addition. Closure is easy,
the identity is 0+0

√
−D, and the additive inverse of a+b

√
−D is = a−b

√
−D. Associativity

is inherited from Z. The multiplicative unit is 1 + 0
√
−D, since

(a+ b
√
−D)(1 + 0

√
−D) = (a1− 0bD) + (a0 + b1

√
−D) = a+ b

√
−D

for a + b
√
−D ∈ Z[

√
−D]. We check associativity with a tedious computation. Note that

this computation isn’t really necessary, because Z[
√
−D] is a subring of C, so associativity

is inherited.

[(a+ b
√
−D)(c+ d

√
−D)](e+ f

√
−D) = [(ac− bdD) + (ad+ bc)

√
−D](e+ f

√
−D)

= [(ac− bdD)e− (ad+ bc)fD] + [(ac− bdD)f + (ad+ bc)e]
√
−D

= [ace− bdeD − adfD + bcfD] + [acf − bdfD + ade+ bce]
√
−D

(a+ b
√
−D)[(c+ d

√
−D)(e+ f

√
−D)] = (a+ b

√
−D)[(ce− dfD) + (cf + ed)

√
−D]

= [a(ce− dfD)− b(cf + de)D] + [b(ce− dfD) + a(cf + de)]
√
−D

= [ace− adfD − bdfD − bdeD] + [bce− bdfD + acf + ade]
√
−D
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Thus multiplication is associative. Finally, we check that multiplication distributes over
addition with another tedious calculation.

(a+ b
√
−D)[(c+ d

√
−D) + (e+ f

√
−D)] = (a+ b

√
−D)[(c+ e) + (d+ f)

√
−D]

= [a(c+ e)− b(d+ f)D] + [b(c+ e) + a(d+ f)]
√
−D

= [ac+ ae− bdD − bfD] + [bc+ be+ ad+ af ]
√
−D

(a+ b
√
−D)(c+ d

√
−D) + (a+ b

√
−D)(e+ f

√
−D) =

= [(ac− bdD) + (ad+ bc)D] + [(ae− bfD) + (af + be)
√
−D]

= [ac+ ae− bdD − bfD] + [ad+ bc+ af + be]
√
−D

Thus multiplication distributes over addition.

Proposition 0.8 (Chapter 2, Exercise 10b). Let D ∈ N and let R = Z[
√
−D]. Then the

map R→ R given by (a+ b
√
−D) 7→ (a− d

√
−D) is a ring isomorphism.

Proof. It is obvious that φ is a bijection. It is a homomorphism by the following tedious
calculations. Let a, b, c, d ∈ Z. Addition is preserved, as seen below.

φ[(a+ b
√
−D) + (c+ d

√
−D)] = φ[(a+ c) + (b+ d)

√
−D]

= (a+ c)− (b+ d)
√
−D

= (a− d
√
−D) + (c− d

√
−D)

= φ(a+ b
√
−D) + φ(c+ d

√
−D)

And multiplication is also preserved, by the following calculation.

φ[(a+ b
√
−D)(c+ d

√
−D)] = φ[(ac− bdD) + (bc+ ad)

√
−D]

= (ac− bdD)− (bc+ ad)
√
−D

= (ac− bdD) + (−bc− ad)
√
−D

= (a− b
√
−D)(c− d

√
−D)

Lemma 0.9 (for Chapter 2, Exercise 10c). Let D ∈ N and let R = Z[
√
−D]. Define

φ : R \ {0} → N by
φ(a+ b

√
−D) = a2 + b2D

Then φ(xy) = φ(x)φ(y) for x, y ∈ R.

Proof. Let x = a+ b
√
−D and y = c+ d

√
−D.

φ(xy) = φ((a+ b
√
−D)(c+ d

√
−D)) = φ((ac− bdD) + (ad+ bc))

= (ac− bdD)2 + (ad+ bc)2D

= a2c2 − 2acbdD + b2d2D2 + a2d2D + 2adbcD + b2c2D

= a2c2 + b2d2D2 + a2d2D + b2c2D = (a2 + b2D)(c2 + d2D)

= φ(a+ b
√
−D)φ(c+ d

√
−D) = φ(x)φ(y)

4



Proposition 0.10 (Chapter 2, Exercise 10c). Let D ≥ 2 and define φ as above. Then
φ(x) = 1 if and only if x is a unit. Consequently, the only units in Z[

√
−D] are ±1.

Proof. Suppose that x = a + b
√
−D is a unit in Z[

√
−D]. Then φ(1) = φ(xx−1) =

φ(x)φ(x−1). Since φ(1) = 1, this implies that φ(x) = 1. Conversely, suppose that φ(x) =
φ(a + b

√
−D) = a2 + b2D = 1. Then since D ≥ 2, the only integer solutions for a, b are

a = 1, b = 0. Hence x is the unit ±1.
We have shown that if x is a unit, then φ(x) = 1, and if φ(x) = 1, then x = ±1. Hence

the only units are ±1.

Proposition 0.11 (Chapter 2, Exercise 10d). The elements 3, 2 +
√
−5, and 2−

√
−5 are

irreducible in Z[
√
−5].

Proof. Suppose that any of 3, 2 +
√
−5 or 2−

√
−5 is reducible. Then it can be written as

a product xy for some non-units x, y ∈ Z[
√
−5]. Then

9 = φ(3) = φ(2 +
√
−5) = φ(2−

√
−5) = φ(xy) = φ(x)φ(y)

Since φ(x), φ(y) ∈ N ⊂ Z and Z is a unique factorization domain, this implies that φ(x) =
φ(y) = 3 or φ(x) = 1 and φ(y) = 9 (up to switching the labels x, y.) The latter case
contradicts the fact that x is not a unit, so we have φ(x) = φ(y) = 3. Then if x = a+ b

√
−5,

we have a2 + 5b2 = 3.
There are no solutions to the above equation for integers a, b. (We must have b = 0 since

otherwise the sum exceeds 3, but 3 is not the square of any integer.) Thus there is no such
x ∈ Z[

√
−5] with φ(x) = 3, so there cannot be such a nontrivial factorization of 3, 2 +

√
−5,

or 2−
√
−5. Hence all three are irreducible.

Proposition 0.12 (Chapter 2, Exercise 10e). The ideal 〈3, 2 +
√
−5〉 is not principal in

Z[
√
−5].

Proof. Suppose it is principal. Then we can write 3 and 2 +
√
−5 as multiples of some

x ∈ Z[
√
−5].

3 = αx 2 +
√
−5 = βx

where α, β ∈ Z[
√
−5]. Then

9 = φ(3) = φ(α)φ(x) 9 = φ(2 +
√
−5) = φ(β)φ(x)

By the same arguments as in part (d), there is no x ∈ Z[
√
−5] with φ(x) = 3, so these

equations imply that φ(x) ∈ {±1,±9}. If φ(x) = ±9, then φ(α) = φ(β) = 1, so α, β are
units, which mean they are equal to ±1,±i. (Note that ±i 6∈ Z[

√
−5].) But this would

imply that 3 = βα−1(2 +
√
−5) for α, β ∈ {±1,±i}, which is false. Thus φ(x) = ±1, which

implies that x is unit. Then 〈x〉 = R, so in particular, 2−
√
−5 can be written as

2−
√
−5 = 3(a+ b

√
−5) + (2 +

√
−5)(c+ d

√
−5)

= 3a+ 3b
√
−5 + 2c− 5d+ 2d

√
−5 + c

√
−5

= (3a+ 2c− 5d) + (3b+ 2d+ c)
√
−5
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which implies c = −1− 3b− 2d so

(3a+ 2c− 5d) = (3a+ 2(−1− 3b− 2d)− 5d) = (3a− 2− 6b− 9d)

Then equating the “real” parts gives

2 = (3a− 6b− 9d− 2) =⇒ 4 = 3a− 6b− 9d = 3(a− 2b− 3d)

But 4 is not divisible by 3, so this is impossible for a, b, d ∈ Z. Hence 2−
√
−5 6∈ 〈3, 2+

√
−5〉,

so 〈3, 2 +
√
−5〉 6= 〈x〉. Thus it is not a principal ideal.

Proposition 0.13 (Chapter 4, Exercise 1). Let k be a field and f(x) ∈ k[x]. The following
are equivalent:

1. The ideal 〈f(x)〉 is prime.

2. The ideal 〈f(x)〉 is maximal.

3. f(x) is irreducible.

Proof. We already know that (2) =⇒ (1) since every maximal ideal is prime. First we
show (1) =⇒ (3). Suppose that 〈f(x)〉 is prime and f(x) is reducible. Then there exist
h, g ∈ k[x] so that f = gh and g, h both have degree ≥ 1. Then gh ∈ 〈f(x)〉, but neither
of g, h is in 〈f(x)〉 since both have degree strictly less than deg f . This contradicts 〈f(x)〉
being prime, so f is irreducible. Thus (1) =⇒ (3).

Now we show that (3) =⇒ (2). Suppose that f(x) is irreducible, and 〈f(x)〉 is not
maximal. Then there is a proper ideal I ⊂ k[x] with 〈f(x)〉 ⊂ I. Since k[x] is a principal
ideal domain, I = 〈g(x)〉 for some g ∈ k[x]. Then f ∈ 〈g〉 so f(x) = g(x)h(x) for some
h ∈ k[x]. Since f is irreducible, one of g, h is constant. If h is constant, then 〈f〉 = 〈g〉 = I,
and if g is constant then 〈g〉 = k[x]. Thus I = k[x] of I = 〈f〉. Thus 〈f〉 is maximal.

Proposition 0.14 (Chapter 4, Exercise 5a). f(x) = x4 + 1 and g(x) = x6 + x3 + 1 are
irreducible over Q.

Proof. First we compute

f(x+ 1) = (x+ 1)4 + 1 = x4 + 4x3 + 6x2 + 4x+ 2

Now we can apply Eisenstein’s criterion, with p = 2. Thus f(x+ 1) is irreducible over Q, so
f(x) is also irreducible over Q. Similarly,

g(x+ 1) = (x+ 1)6 + (x+ 1)3 + 1 = x6 + 6x5 + 15x4 + 21x3 + 18x2 + 9x+ 3

so g(x + 1) satisfies Eisenstein’s criterion for p = 3. Thus g(x + 1) is irreducible over Q, so
g(x) is irreducible over Q.

Proposition 0.15 (Chapter 4, Exercise 5b, part one). Let K be a field. A polynomial
f ∈ k[x] with degree 3 is either irreducible or has a root in K.
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Proof. Suppose f is reducible. Then we can write it as f(x) = g(x)h(x) where g, h both
have degree greater than or equal to 1. Then since deg f = 3 = deg g + deg h, one of g, h
must have degree 1. WLOG, assume deg g = 1. Then g(x) = ax+ b for some a, b ∈ k. Then
g(−a−1b) = 0, so −a−1b is a root of g, and hence a root of f .

Proposition 0.16 (Chapter 4, Exercise 5b, part two). f(x) = x3 − 5x2 + 1 is irreducible
over Q.

Proof. By the integral root test, a rational root b/d of f must satisfy b|1 and d|1. Thus ±1
are the only possible rational roots. Since f(1) = −3 and f(−1) = −5, f has no rational
roots. By the above proposition, f is irreducible over Q.

Lemma 0.17 (for Chapter 4, Exercise 5c). Let R be a unique factorization domain and let
f ∈ R[x1, . . . , xn] be nonzero. Let A be a unique factorization domain containing R. If f is
irreducible in A[x1, . . . , xn], then f is irreducible in R[x1, . . . , xn].

Proof. Let φ : R → A be the inclusion homomorphism. Then φf 6= 0 and deg φf = deg f .
By hypothesis, φf is irreducible in A[x1, . . . , xn], so by Theorem 3.2 (Reduction Criterion,
page 185 of Lang), f is irreducible in R[x1, . . . , xn].

Proposition 0.18 (Chapter 4, Exercise 5c). f(x, y) = x2 + y2 − 1 is irreducible in C[x, y].

Proof. Note that C[y] is a unique factorization domain and (y − 1) is a prime. Then f ∈
(C[y])[x] = C[x, y], and we can rewrite f as

f(x, y) = x2 + y2 − 1 = x2 + (y − 1)(y + 1)

So we can see that f satisfies Eisenstein’s criterion for the prime (y−1). Thus f is irreducible
in K[x], where K is the quotient field of C[y]. Then because C[y] ⊂ K, we also have
C[y][x] = C[x, y] ⊂ K[x]. By the above lemma, since f is irreducible in K[x], it is irreducible
in C[x, y].

Corollary 0.19 (Chapter 4, Exercise 5c). f(x, y) = x2 + y2 − 1 is irreducible over Q.

Proof. The unique factorization domain Q[x, y] is a subset of the unique factorization domain
C[x, y], and f is irreducible in C[x, y]. By the above lemma, this implies that f is irreducible
in Q[x, y].

Lemma 0.20 (for Exercise 4, Chapter 6). Let A be a unique factorization domain. For
a, b ∈ A,

a|b ⇐⇒ b ≡ 0 mod a

Proof.
b ≡ 0 mod a ⇐⇒ b− 0 = b ∈ (a) ⇐⇒ b = ac ⇐⇒ a|b

Proposition 0.21 (Chapter 4, Exercise 6, The Integral Root Test). Let A be a unique
factorization domain and K is quotient field. Let

f(x) = anx
n + . . .+ a0 ∈ A[x]

and let α ∈ K be a root of f , with α = b/d where b, d are relatively prime. Then b|a0 and
d|an. In particular, if an = 1, then α ∈ A and α|a0.
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Proof. If α = b/d is a root of f , then

f(α) = f(b/d) = 0 =⇒ an(b/d)n + . . .+ a1(b/d) + a0 = 0

Multiplying by dn gives

anb
n + an−1b

n−1d+ . . .+ a1bd
n−1 + a0d

n = 0

Thus anb
n ≡ 0 mod d and a0 ≡ 0 mod b. Thus d|anbn and b|a0bn. Since b, d are relatively

prime, d - bn and b - dn. Thus d|an and b|a0. If an = 1, then d must be a unit, so
α = b/d ∈ A.
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