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Proposition 0.1 (Exercise 1, Image of 1g). Let A be a commutative ring and S a multi-
plicative subset. Let J(A) denote the set of ideals of A and let J(S™'A) denote the set of
ideals of STYA. Then define g : J(A) — J(S7LA) by

ws([):Sfllz{gzaEI,SES}

The map g : J(A) — J(S™'A) defined above is surjective.

Proof. Let f: A — S7'A be the canonical homomorphism a 1 and let I be an ideal of
S~—1A. We know that f~!(I) is an ideal of A. We claim that ¢5(f~*(I)) = I. (Then I must
be in the image of 1, so ¥g is surjective.) First we show that ¥g(f~*(I)) C I. From the
definition,

a

vs(f ) = {2 ety ses)= {2 f@="elLses)

a 1 a 1
= — N R I
{(1)(3) 1€ ’SGS}C
where the last inclusion follows from the fact that I is an ideal of S~ A. Now we show that
IC wg(f_l(f)). If% € I, then

(5)(F)=F=fl@el = ac i) = =evs(f (1)
Hence I = ¢s(f1(I)), so g is surjective. O
Proposition 0.2 (Exercise 1, Kernel of 1g). Let 15 be the map defined above. Then its
kernel, with respect to the multiplicative homomorphism structure of J(A) is

keripg ={I:1NS # 0}
Proof. Suppose I € kerig. Then

bs(I) = {9 caclse S} — 54

s
If INS # 0, then 1g(I) contains 1 and hence is equal to S7'A. If INS = @, then 1 & ¢g(I),
so Ps(I) # S7'A. Thus an ideal I is in the kernel of ¢ if and only if it has nonempty
intersection with S. ]



Proposition 0.3 (Exercise 2a). Every Fuclidean domain is a principal ideal domain. Con-
sequently, every Fuclidean domain is a unique factorization domain.

Proof. Let R be a Euclidean domain, and ¢ : R\ {0} — N a function satisfying ab # 0 —
¢(a) < ¢(ab) and for a,b € R with b # 0, there exist r,q € R so that a = ¢gb + r with either
r=0orr#0and ¢(r) < ¢(b).

Let I be an ideal of R and choose a nonzero a € I such that ¢(a) < ¢(b) for all b € I.
We claim that [ = (a). If b € I with b # 0, then there exist 7, ¢ such that b = aq + r where
r =0 or ¢(r) < ¢(a). Then since r = b — aq, r € I. By choice of a, we have ¢(a) > ¢(r), so
we must have r = 0. Thus b = aq for some ¢ € R, hence I = (a).

Every principal ideal domain is a unique factorization domain, so every Euclidean domain
is a unique factorization domain. L]

Lemma 0.4 (for Exercise 2b). Define ¢ : Z[i] \ {0} — N by ¢(a + bi) = a® + b*. Then
P(zy) = ¢(x)d(y).

Proof. Let v = a+ bi,y = c+ di € Z[i].
d(zy) = ¢((a + bi)(c + di)) = ¢((ac — bd) + (ad + be)) = (ac — bd)* + (ad + be)?
= a%c® — 2acbd + V2d? + a*d? + 2adbe + b2? = a*? + a*d? + b*? + b2 d?
= (a® +)(? + d?) = ¢la + bi)p(c + di) = ¢(x)¢(y)
O

Proposition 0.5 (Exercise 2b, part one). The ring Z[i] is a Fuclidean domain. Conse-
quently, it is a principal ideal domain and a unique factorization domain.

Proof. Define ¢ : Z[i] \ {0} — N by ¢(a + bi) = a® + b*. The first property is easy. Suppose
xy € Z[i] with zy # 0. As shown above, ¢(zy) = ¢(x)o(y), so

o(z) < ¢(x)d(y) = ¢(zy)

since ¢(y) > 1. The second property is harder. Suppose that z,y € Z[i] with y # 0. Since
Zli] is an integral domain, we can form its field of fractions K. Since y # 0, zy~* € K. We
claim that we can write zy~! as s+ ti for s,t € Q, by performing an operation analogous to
multiplying by the complex conjugate. If x = a + b1 and y = ¢ + di, then

-l — a+bi  (a+bi)(c—di) (ac+bd)+ (ad — bc)i _ac+bd+ad—bci
Y et di (c+di)(c—di) 2 —d? T —d? 22

So we have written xy~! in the appropriate form. Then we can choose m,n € Z so that
Im —s| <1 and |n—¢| < 3. Then

vyt =s+ti=(m—m+s)+(n—n+t)i=(m+ni)+ [(s—m)+ (t—n)]i
Then multiplying through by y gives
= (m+ni)y+ [(s—m)+ (t—n)|yi
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Finally, let ¢ = (m+ni) and r = [(s —m) + (t —n)i]y. We have ¢ € Z]i] and since r = x — qy
we also have r € Z[i]. And

o(r) = o([(s —m) + (t = n)ily) = o([(s —m) + (t — n)i])o(y)

= ((s —m)> + (t — n)?) d(y) < (i + i) ¢y) < o(y)

Thus Z[i] satisfies the division algorithm property. Thus ¢ makes Z[i] a Euclidean domain,
which implies that it is also a principal ideal domain and a unique factorization domain. []

Proposition 0.6 (Exercise 2b, part two). Let R = Z[i] and define ¢ as above. Then x € Z]i]
is a unit if and only if ¢(x) = 1. Consequently, the only units in Z[i] are £1, £i.

Proof. Suppose that z is a unit. Then ¢(1) = ¢(zz™!) = ¢(z)d(x™1). Since ¢(1) = 1, this
implies that ¢(z) = 1. Conversely, suppose that ¢(x) = ¢(a + bi) = a®> + b> = 1. The
only integer solutions to this are (1,0),(0,1),(—1,0), and (0,—1). Hence z is one of the
units 1, —1,4, —i. We have shown that if z is a unit, then ¢(z) = 1, and if ¢(x) = 1, then
x € {£1, +i}. Hence the only units are £1, +. O

Proposition 0.7 (Chapter 2, Exercise 10a). Let D € N and let
R={a+bv—D:abeZ}
(We denote R by Z[v/—D).) Then define multiplication and addition in R analogously with
the ring structure on C:
(a+bvV—D)+ (c+dvV—D)=(a+c)+ (b+d)vV—D
(a +bvV—D)(c+dvV—D) = (ac — bdD) + (ad + bc)v/—D

Then R 1s a ring under these operations.

Proof. First we check that R is an abelian group with respect to addition. Closure is easy,
the identity is 0+0+/—D, and the additive inverse of a+by/—D is = a—bv/—D. Associativity
is inherited from Z. The multiplicative unit is 1 + 0+/—D, since

(a+ bv/=D)(1 4 0v/=D) = (al — 0bD) + (a0 + b1v/—D) = a + bv/—D

for a + bv/—D € Z[v/—D]. We check associativity with a tedious computation. Note that
this computation isn’t really necessary, because Z[v/—D] is a subring of C, so associativity
is inherited.

[(a +b0V=D)(c +dv=D)]|(e + fv=D) = [(ac — bdD) + (ad + be)vV'=D](e + fv~D)
= [(ac — bdD)e — (ad + be) f D] + [(ac — bdD) f + (ad + be)e]N/—D
= [ace — bdeD — adf D + bef D] + [acf — bdf D + ade + bee]v/—D

(a4 bvV/=D)[(c + dV/=D)(e + fv/=D)] = (a + bv/=D)[(ce — df D) + (cf + ed)v/—D]
= [a(ce — df D) — b(cf + de)D] + [b(ce — df D) + a(cf + de)]v/—D
= [ace — adf D — bdf D — bdeD] + [bce — bdf D + acf + ade]/—D



Thus multiplication is associative. Finally, we check that multiplication distributes over
addition with another tedious calculation.

(a+bV=D)[(c +dV~D) + (e + fV=D)] = (a +bV/=D)[(c + ¢) + (d + f)V—=D]
= [a(c+€) —b(d + f)D] + [b(c + €) + a(d + f)]V=D
= [ac + ae — bdD — bf D] + [bc + be + ad + af]v/—D
(a+bvV=D)(c+dV=D) + (a +b/=D)(e + fV/—D) =
= [(ac — bdD) + (ad + be) D] + [(ae — bfD) + (af + be)v/—D]
= [ac + ae — bdD — bf D] + [ad + bc + af + be]v/—D
Thus multiplication distributes over addition. O

Proposition 0.8 (Chapter 2, Exercise 10b). Let D € N and let R = Z[\/—D|. Then the
map R — R given by (a + bv/—D) — (a — dv/—D) is a ring isomorphism.

Proof. 1t is obvious that ¢ is a bijection. It is a homomorphism by the following tedious
calculations. Let a,b,c,d € Z. Addition is preserved, as seen below.

ol(a+bvV—=D) + (¢ + dvV—D)] = ¢[(a+ ¢) + (b+ d)vV/—D]
= (a+c¢)— (b+d)V-D
= (a—d\/j)—l—(c—d\/j)
= ¢(a +bvV/—D) + ¢(c + dvV/—D)

And multiplication is also preserved, by the following calculation.

¢[(a + bv/=D)(c + dv—D)] = ¢[(ac — bdD) + (bc + ad)v/—D)]
= (ac — bdD) — (bc + ad)v/—D
= (ac — bdD) + (=bc — ad)\/—D
= (a — bV=D)(c — dv/—D)
O

Lemma 0.9 (for Chapter 2, Exercise 10c). Let D € N and let R = Z[\/—D|. Define
¢: R\ {0} - N by
p(a+bv/—D) = a® + b*D
Then ¢(zy) = ¢(x)¢(y) for z,y € R.
Proof. Let x =a+byv—D and y = c+ dv/—D.
o(zy) = ¢((a+ bV —D)(c+ dv—D)) = ¢((ac — bdD) + (ad + be))

= (ac — bdD)* + (ad + bc)*D

= a’c® — 2acbdD + b*d*D?* 4 a*d*>D + 2adbeD + b*c* D

= a’c® + V’d*D? + a*d®D + v*c*D = (a* + b*D)(c® + d*D)

= ¢(a+bV=D)¢(c+dv—D) = ¢(z)d(y)



Proposition 0.10 (Chapter 2, Exercise 10c). Let D > 2 and define ¢ as above. Then
¢(x) =1 if and only if x is a unit. Consequently, the only units in Z[/—D)] are £1.

Proof. Suppose that * = a + by/—D is a unit in Z[y/=D]. Then ¢(1) = ¢(zz~!) =
oé(x)p(z~1). Since ¢(1) = 1, this implies that ¢(z) = 1. Conversely, suppose that ¢(z) =
¢(a +by/—D) = a®> + b»’D = 1. Then since D > 2, the only integer solutions for a,b are
a=1,b=0. Hence x is the unit £1.

We have shown that if x is a unit, then ¢(z) = 1, and if ¢(z) = 1, then x = £1. Hence
the only units are £1. O]

Proposition 0.11 (Chapter 2, Exercise 10d). The elements 3,2 + /=5, and 2 — /=5 are
irreducible in Z[/—5].

Proof. Suppose that any of 3,2 + /=5 or 2 — y/—5 is reducible. Then it can be written as
a product xy for some non-units x,y € Z[v/—5|. Then

9=0(3) = 2+ V-5) = ¢(2 — V=5) = ¢(zy) = ¢(x)(y)

Since ¢(x),¢(y) € N C Z and Z is a unique factorization domain, this implies that ¢(z) =
d(y) = 3 or ¢(x) = 1 and ¢(y) = 9 (up to switching the labels z,y.) The latter case
contradicts the fact that x is not a unit, so we have ¢(x) = ¢(y) = 3. Then if x = a+ by/—5,
we have a? + 5b = 3.

There are no solutions to the above equation for integers a,b. (We must have b = 0 since
otherwise the sum exceeds 3, but 3 is not the square of any integer.) Thus there is no such
x € Z[\/=5] with ¢(x) = 3, so there cannot be such a nontrivial factorization of 3,2 + /=5,
or 2 —+/—5. Hence all three are irreducible. O

Proposition 0.12 (Chapter 2, Exercise 10e). The ideal (3,2 + \/—5) is not principal in

Z[V=5.
Proof. Suppose it is principal. Then we can write 3 and 2 4+ /—5 as multiples of some
x € Z[\/=5].
3=azx 2++v—5=px
where a, 8 € Z[/=5]. Then
9=0¢(3) = op()o(z) 9 =¢(2+v=5) = ¢(8)d(x)

By the same arguments as in part (d), there is no z € Z[v/=5| with ¢(x) = 3, so these
equations imply that ¢(x) € {£1,+9}. If ¢(z) = £9, then ¢(a) = ¢(B) = 1, so a, 5 are
units, which mean they are equal to £1,4-i. (Note that 44 ¢ Z[v/—5].) But this would
imply that 3 = Ba~'(2 4 /=5) for a, 8 € {£1,+i}, which is false. Thus ¢(x) = £1, which
implies that z is unit. Then (z) = R, so in particular, 2 — v/=5 can be written as

2 — V=5 =3(a+bvV=5) + (2 +V=5)(c + dv—5)

= 3a + 3bvV/—5+ 2¢ — bd + 2dvV/ -5+ ¢/ =5
= (3a+2c—5d) + (3b+2d + ¢)vV—5



which implies ¢ = —1 — 3b — 2d so
(3a +2¢—5d) = (3a+2(—1 — 3b— 2d) — 5d) = (3a — 2 — 6b — 9d)
Then equating the “real” parts gives
2=(3a—6b—9d—2) = 4=3a—6b—9d=3(a —2b— 3d)

But 4 is not divisible by 3, so this is impossible for a,b,d € Z. Hence 2—+/—5 ¢ (3,24++/—5),
s0 (3,2 4+ +/—b) # (x). Thus it is not a principal ideal.

Proposition 0.13 (Chapter 4, Exercise 1). Let k be a field and f(z) € k[z]. The following
are equivalent:

1. The ideal (f(z)) is prime.
2. The ideal (f(x)) is mazimal.
3. f(x) is wrreducible.

Proof. We already know that (2) = (1) since every maximal ideal is prime. First we
show (1) = (3). Suppose that (f(z)) is prime and f(x) is reducible. Then there exist
h,g € k[x] so that f = gh and g, h both have degree > 1. Then gh € (f(x)), but neither
of g,h is in (f(x)) since both have degree strictly less than deg f. This contradicts (f(z))
being prime, so f is irreducible. Thus (1) = (3).

Now we show that (3) = (2). Suppose that f(x) is irreducible, and (f(z)) is not
maximal. Then there is a proper ideal I C k[z] with (f(z)) C I. Since k[x] is a principal
ideal domain, I = (g(z)) for some g € k[z]. Then f € (g) so f(z) = g(x)h(x) for some
h € k[z]. Since f is irreducible, one of g, h is constant. If & is constant, then (f) = (g) = I,
and if g is constant then (g) = k[z]. Thus I = k[z] of I = (f). Thus (f) is maximal. O

Proposition 0.14 (Chapter 4, Exercise 5a). f(z) = 2* + 1 and g(x) = 25 + 23 + 1 are
wrreducible over Q.

Proof. First we compute
flz+1) =(x+1)"+1=2"+42° + 627 + 4z + 2

Now we can apply Eisenstein’s criterion, with p = 2. Thus f(z 4 1) is irreducible over Q, so
f(z) is also irreducible over Q. Similarly,

gx+1) =@+ + (@ +1)°+1=2a°+62" + 152" +212° + 182 + 92 + 3

so g(z + 1) satisfies Eisenstein’s criterion for p = 3. Thus g(x + 1) is irreducible over @Q, so
g(x) is irreducible over Q. O

Proposition 0.15 (Chapter 4, Exercise 5b, part one). Let K be a field. A polynomial
f € klz] with degree 3 is either irreducible or has a root in K.



Proof. Suppose f is reducible. Then we can write it as f(z) = g(x)h(x) where g, h both
have degree greater than or equal to 1. Then since deg f = 3 = degg + degh, one of g, h
must have degree 1. WLOG, assume deg g = 1. Then g(z) = ax + b for some a,b € k. Then
g(—a=1b) =0, so —a~1b is a root of g, and hence a root of f. O

Proposition 0.16 (Chapter 4, Exercise 5b, part two). f(z) = 2® — 522 + 1 is irreducible
over Q.

Proof. By the integral root test, a rational root b/d of f must satisfy b|1 and d|1. Thus +1
are the only possible rational roots. Since f(1) = —3 and f(—1) = —5, f has no rational
roots. By the above proposition, f is irreducible over Q. O]

Lemma 0.17 (for Chapter 4, Exercise 5c). Let R be a unique factorization domain and let
f € R[xy,...,x,] be nonzero. Let A be a unique factorization domain containing R. If f is
irreducible in Alxy, ..., z,], then f is irreducible in Rlxy, ..., x,].

Proof. Let ¢ : R — A be the inclusion homomorphism. Then ¢f # 0 and deg¢f = deg f.
By hypothesis, ¢f is irreducible in A[zy, ..., x,], so by Theorem 3.2 (Reduction Criterion,
page 185 of Lang), f is irreducible in R[zq, ..., x,]. O

Proposition 0.18 (Chapter 4, Exercise 5¢). f(z,y) = 2? + y* — 1 is irreducible in C[z, y].
Proof. Note that C[y] is a unique factorization domain and (y — 1) is a prime. Then f €
(Cly])[z] = Cl[z,y], and we can rewrite f as

flay) =2"+y —l=2"+(y-Dy+1)

So we can see that f satisfies Eisenstein’s criterion for the prime (y—1). Thus f is irreducible
in K|z], where K is the quotient field of C[y]. Then because Cly] C K, we also have
Cly|[z] = Clz,y] C K|[z]. By the above lemma, since f is irreducible in K|x], it is irreducible
in Clz, y]. O

Corollary 0.19 (Chapter 4, Exercise 5¢). f(x,y) = 2? + y? — 1 is irreducible over Q.

Proof. The unique factorization domain Q|x, y] is a subset of the unique factorization domain
Clx,y], and f is irreducible in C[x,y]. By the above lemma, this implies that f is irreducible

in Q[z,y]. O

Lemma 0.20 (for Exercise 4, Chapter 6). Let A be a unique factorization domain. For
a,b e A,
alb <= b=0mod a

Proof.
b=0moda <= b—0=b€ (a) <= b=ac < alb

[]

Proposition 0.21 (Chapter 4, Exercise 6, The Integral Root Test). Let A be a unique
factorization domain and K is quotient field. Let

f(z) = apa™ + ... 4+ ap € Alz]
and let « € K be a root of f, with « = b/d where b,d are relatively prime. Then blag and

d|a,. In particular, if a, = 1, then a € A and «|ay.
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Proof. 1f « =b/d is a root of f, then
fla)=f(b/d) =0 = a,(b/d)" + ...+ ai(b/d) +ap =0
Multiplying by d™ gives
anb” + an V" 'd+ ..+ aibd" T+ apd” =0

Thus a,b" = 0 mod d and ap = 0 mod b. Thus d|a,b" and blagh™. Since b, d are relatively
prime, d t b™ and b { d". Thus d|a, and blag. If a, = 1, then d must be a unit, so
a=b/de A O



